Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Sci Rep ; 14(1): 9484, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664505

Trait impulsivity represents a tendency to take action without forethought or consideration of consequences. This trait is multifaceted and can be decomposed into attentional, motor and non-planning subtypes of impulsivity. The purpose of the current study was to investigate how subtypes of trait impulsivity responded to different degrees of threat within room-scale virtual reality (VR) with respect to behaviour and level of physiological activation. Thirty-four participants were required to negotiate a virtual environment (VE) where they walked at height with the continuous threat of a virtual 'fall.' Behavioural measures related to the speed of movement, interaction frequency and risk were collected. Participants also wore ambulatory sensors to collect data from electrocardiogram (ECG) and electrodermal activity (EDA). Our results indicated that participants who scored highly on non-planning impulsivity exhibited riskier behaviour and higher skin conductance level (SCL). Participants with higher motor impulsivity interacted with more objects in the VE when threat was high, they also exhibited contradictory indicators of physiological activation. Attentional impulsivity was associated with a greater number of falls across the VE. The results demonstrate that subtypes of trait impulsivity respond to threats via different patterns of behaviour and levels of physiological activation, reinforcing the multifaceted nature of the trait.


Impulsive Behavior , Virtual Reality , Humans , Impulsive Behavior/physiology , Male , Female , Adult , Young Adult , Galvanic Skin Response/physiology , Electrocardiography , Attention/physiology
2.
Neurosci Lett ; 793: 136967, 2023 01 10.
Article En | MEDLINE | ID: mdl-36379390

The dorsal and ventral attention networks (DAN & VAN) provide a framework for studying attentional modulation of pain. It has been argued that cognitive demand distracts attention from painful stimuli via top-down reinforcement of task goals (DAN), whereas pain exerts an interruptive effect on cognitive performance via bottom-up pathways (VAN). The current study explores this explanatory framework by manipulating pain and task demand in combination with functional near-infrared spectroscopy (fNIRS) and Granger Causal Connectivity Analyses (GCCA). Twenty-one participants played a racing game at low and high difficulty levels with or without experimental pain (administered via a cold pressor test). Six channels of fNIRS were collected from bilateral frontal eye fields and intraparietal sulci (DAN), with right-lateralised channels at the inferior frontal gyrus and temporoparietal junction (VAN). Our first analysis revealed increased G-causality from bottom-up pathways (VAN) during the cold pressor test. However, an equivalent experience of experimental pain during gameplay increased G-causality in top-down (DAN) pathways, with the left intraparietal sulcus serving a hub of connectivity. High game difficulty increased G-causality via top-down pathways and implicated the right inferior frontal gyrus as an interhemispheric hub. Our results are discussed with reference to existing models of both networks and attentional modulation of pain.


Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Parietal Lobe/physiology , Frontal Lobe/physiology , Pain
3.
Sci Rep ; 12(1): 12890, 2022 07 28.
Article En | MEDLINE | ID: mdl-35902608

Our sense of time is fallible, often resulting in the sensation of time flying by quickly or dragging slowly. It has been suggested that changes in sympathetic (SNS) and parasympathetic nervous system (PNS) activity may influence the perceived passage of time, however this proposition has never been tested during real-world temporal experience. The current study directly tested the relationship between the passage of time and SNS-PNS activity in the real-world. Sixty-seven participants completed a normal day's activities whilst wearing sensors to capture electrocardiography (ECG), electrodermal activity (EDA) and movement. They also provided hourly rating of the subjective speed at which time was passing. Results revealed that greater SNS activity (e.g., increased heart rate, frequency of phasic skin conductance response) was associated with time passing more quickly. PNS activity was not related to time experience. Whilst the findings support previous suggestions that changes in physiological arousal are associated with distortions to the passage of time, the effects are small and other factors are likely to contribute to real-world temporal experience.


Electrocardiography , Parasympathetic Nervous System , Galvanic Skin Response , Heart Rate/physiology , Humans , Parasympathetic Nervous System/physiology , Psychophysiology , Sympathetic Nervous System/physiology , Time
4.
Hear Res ; 410: 108348, 2021 10.
Article En | MEDLINE | ID: mdl-34543837

Research on listening effort has used various physiological measures to examine the biological correlates of listening effort but a systematic examination of the impact of listening demand on cardiac autonomic nervous system activity is still lacking. The presented study aimed to close this gap by assessing cardiac sympathetic and parasympathetic responses to variations in listening demand. For this purpose, 45 participants performed four speech-in-noise tasks differing in listening demand-manipulated as signal-to-noise ratio varying between +23 dB and -16 dB-while their pre-ejection period and respiratory sinus arrythmia responses were assessed. Cardiac responses showed the expected effect of listening demand on sympathetic activity, but failed to provide evidence for the expected listening demand impact on parasympathetic activity: Pre-ejection period reactivity increased with increasing listening demand across the three possible listening conditions and was low in the very high (impossible) demand condition, whereas respiratory sinus arrythmia did not show this pattern. These findings have two main implications. First, cardiac sympathetic responses seem to be the more sensitive correlate of the impact of task demand on listening effort compared to cardiac parasympathetic responses. Second, very high listening demand may lead to disengagement and correspondingly low effort and reduced cardiac sympathetic response.


Listening Effort , Speech Perception , Arrhythmias, Cardiac , Auditory Perception , Humans , Noise , Speech
5.
Brain Behav ; 11(1): e01910, 2021 01.
Article En | MEDLINE | ID: mdl-33151030

INTRODUCTION: Watchkeeping is a significant activity during maritime operations, and failures of sustained attention and decision-making can increase the likelihood of a collision. METHODS: A study was conducted in a ship bridge simulator where 40 participants (20 experienced/20 inexperienced) performed: (1) a 20-min period of sustained attention to locate a target vessel and (2) a 10-min period of decision-making/action selection to perform an evasive maneuver. Half of the participants also performed an additional task of verbally reporting the position of their vessel. Activation of the prefrontal cortex (PFC) was captured via a 15-channel functional near-infrared spectroscopy (fNIRS) montage, and measures of functional connectivity were calculated frontal using graph-theoretic measures. RESULTS: Neurovascular activation of right lateral area of the PFC decreased during sustained attention and increased during decision-making. The graph-theoretic analysis revealed that density declined during decision-making in comparison with the previous period of sustained attention, while local clustering declined during sustained attention and increased when participants prepared their evasive maneuver. A regression analysis revealed an association between network measures and behavioral outcomes, with respect to spotting the target vessel and making an evasive maneuver. CONCLUSIONS: The right lateral area of the PFC is sensitive to watchkeeping and decision-making during operational performance. Graph-theoretic measures allow us to quantify patterns of functional connectivity and were predictive of safety-critical performance.


Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans
6.
Front Neurogenom ; 2: 695309, 2021.
Article En | MEDLINE | ID: mdl-38235227

Pain tolerance can be increased by the introduction of an active distraction, such as a computer game. This effect has been found to be moderated by game demand, i.e., increased game demand = higher pain tolerance. A study was performed to classify the level of game demand and the presence of pain using implicit measures from functional Near-InfraRed Spectroscopy (fNIRS) and heart rate features from an electrocardiogram (ECG). Twenty participants played a racing game that was configured to induce low (Easy) or high (Hard) levels of demand. Both Easy and Hard levels of game demand were played with or without the presence of experimental pain using the cold pressor test protocol. Eight channels of fNIRS data were recorded from a montage of frontal and central-parietal sites located on the midline. Features were generated from these data, a subset of which were selected for classification using the RELIEFF method. Classifiers for game demand (Easy vs. Hard) and pain (pain vs. no-pain) were developed using five methods: Support Vector Machine (SVM), k-Nearest Neighbour (kNN), Naive Bayes (NB) and Random Forest (RF). These models were validated using a ten fold cross-validation procedure. The SVM approach using features derived from fNIRS was the only method that classified game demand at higher than chance levels (accuracy = 0.66, F1 = 0.68). It was not possible to classify pain vs. no-pain at higher than chance level. The results demonstrate the viability of utilising fNIRS data to classify levels of game demand and the difficulty of classifying pain when another task is present.

8.
Sci Rep ; 10(1): 17338, 2020 10 15.
Article En | MEDLINE | ID: mdl-33060767

Negativity bias, i.e., tendency to respond strongly to negative stimuli, can be captured via behavioural and psychophysiological responses to potential threat. A virtual environment (VE) was created at room-scale wherein participants traversed a grid of ice blocks placed 200 m above the ground. Threat was manipulated by increasing the probability of encountering ice blocks that disintegrated and led to a virtual fall. Participants interacted with the ice blocks via sensors placed on their feet. Thirty-four people were recruited for the study, who were divided into High (HN) and Low (LN) Neuroticism groups. Movement data were recorded alongside skin conductance level and facial electromyography from the corrugator supercilii and zygomaticus major. Risk-averse behaviours, such as standing on 'safe' blocks and testing blocks prior to movement, increased when threat was highest. HN individuals exhibited more risk-averse behaviour than the LN group, especially in the presence of high threat. In addition, activation of the corrugator muscle was higher for HN individuals in the period following a movement to an ice block. These findings are discussed with respect to the use of room-scale VE as a protocol for emotion induction and measuring trait differences in negativity bias within VR.

9.
Front Neurosci ; 14: 268, 2020.
Article En | MEDLINE | ID: mdl-32317914

The assessment and prediction of cognitive performance is a key issue for any discipline concerned with human operators in the context of safety-critical behavior. Most of the research has focused on the measurement of mental workload but this construct remains difficult to operationalize despite decades of research on the topic. Recent advances in Neuroergonomics have expanded our understanding of neurocognitive processes across different operational domains. We provide a framework to disentangle those neural mechanisms that underpin the relationship between task demand, arousal, mental workload and human performance. This approach advocates targeting those specific mental states that precede a reduction of performance efficacy. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a two-dimensional conceptual space encompassing task engagement and arousal. We argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified. We then propose a typology of neuroadaptive countermeasures to mitigate these undesirable mental states.

10.
Clin Cancer Res ; 26(11): 2615-2625, 2020 06 01.
Article En | MEDLINE | ID: mdl-32034073

PURPOSE: Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors (TKI) are poorly understood. We aimed to characterize the genomic mechanisms of resistance to type I and type II MET TKIs and their impact on sequential MET TKI therapy outcomes in patients with metastatic MET exon 14-mutant NSCLC. EXPERIMENTAL DESIGN: Genomic alterations occurring at the time of progression on MET TKIs were studied using plasma and tissue next-generation sequencing (NGS). RESULTS: A total of 20 patients had tissue or plasma available for analysis at the time of acquired resistance to a MET TKI. Genomic alterations known or suspected to be mechanisms of resistance were detected in 15 patients (75%). On-target acquired mechanisms of resistance, including single and polyclonal MET kinase domain mutations in codons H1094, G1163, L1195, D1228, Y1230, and high levels of amplification of the MET exon 14-mutant allele, were observed in 7 patients (35%). A number of off-target mechanisms of resistance were detected in 9 patients (45%), including KRAS mutations and amplifications in KRAS, EGFR, HER3, and BRAF; one case displayed both on- and off-target mechanisms of resistance. In 2 patients with on-target resistant mutations, switching between type I and type II MET TKIs resulted in second partial responses. CONCLUSIONS: On-target secondary mutations and activation of bypass signaling drive resistance to MET TKIs. A deeper understanding of these molecular mechanisms can support the development of sequential or combinatorial therapeutic strategies to overcome resistance.


Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , Exons , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Targeted Therapy , Prognosis
11.
Clin Cancer Res ; 26(11): 2546-2555, 2020 06 01.
Article En | MEDLINE | ID: mdl-32034076

PURPOSE: PARP inhibitors (PARPi) are efficacious in multiple cancers harboring germline (and possibly somatic) BRCA1/2 mutations. Acquired reversions can restore BRCA1/2 function, causing resistance to PARPi and/or platinum-based chemotherapy. The optimal method of identifying patients with germline, somatic, and/or reversion mutations in BRCA1/2 has not been established. Next-generation sequencing (NGS) of cell-free DNA (cfDNA) provides a platform to identify these three types of BRCA1/2 mutations. EXPERIMENTAL DESIGN: Patients with advanced breast, ovarian, prostate, or pancreatic cancer were tested using a clinically validated 73-gene cfDNA assay that evaluates single-nucleotide variants and insertion-deletion mutations (indels) in BRCA1/2, and distinguishes somatic/reversion from germline mutations with high accuracy. RESULTS: Among 828 patients, one or more deleterious BRCA1/2 mutations were detected in 60 (7.2%) patients, including germline (n = 42) and somatic (n = 18) mutations. Common coexisting mutations included TP53 (61.6%), MYC (30%), PIK3CA (26.6%), BRAF (15%), and ESR1 (11.5%). Polyclonal reversion mutations (median, 5) were detected in 9 of 42 (21.4%) germline BRCA1/2-mutant patients, the majority (77.7%) of whom had prior PARPi exposure (median duration, 10 months). Serial cfDNA demonstrated emergence of reversion BRCA mutations under therapeutic pressure from initial PARPi exposure, which contributed to subsequent resistance to PARPi and platinum therapy. CONCLUSIONS: cfDNA NGS identified high rates of therapeutically relevant mutations without foreknowledge of germline or tissue-based testing results, including deleterious somatic BRCA1/2 mutations missed by germline testing and reversion mutations that can have important treatment implications. Further research is needed to confirm clinical utility of these findings to guide precision medicine approaches for patients with advanced malignancies.


BRCA1 Protein/genetics , BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Diagnostic Tests, Routine/methods , Mutation , Neoplasms/diagnosis , Cell-Free Nucleic Acids/blood , Gene Expression Regulation, Neoplastic , Germ Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/blood , Neoplasms/genetics , Prognosis
13.
Exp Hematol Oncol ; 8: 24, 2019.
Article En | MEDLINE | ID: mdl-31632838

Cell-free DNA (cfDNA) next-generation sequencing has the potential to capture tumor heterogeneity and genomic evolution under treatment pressure in a non-invasive manner. Here, we report the detection of EGFR L792 mutations, a non-covalent mechanism of osimertinib resistance, using Guardant360 cfDNA testing in a patient with metastatic EGFR-mutant non-small cell lung cancer (NSCLC) whose disease progressed on osimertinib. We subsequently analyzed a large cohort of over 1800 additional patient samples harboring an EGFR T790M mutation and identified a concomitant L792 mutation in a total of 22 (1.2%) cases. In vitro functional assays demonstrated that the EGFR L858R/T790M/L792F/H mutations conferred intermediate-level resistance to osimertinib. Further understanding of potential acquired resistance mechanisms to targeted therapy may help inform treatment strategy in EGFR-mutant NSCLC.

14.
Clin Cancer Res ; 25(23): 7035-7045, 2019 12 01.
Article En | MEDLINE | ID: mdl-31383735

PURPOSE: To analytically and clinically validate microsatellite instability (MSI) detection using cell-free DNA (cfDNA) sequencing. EXPERIMENTAL DESIGN: Pan-cancer MSI detection using Guardant360 was analytically validated according to established guidelines and clinically validated using 1,145 cfDNA samples for which tissue MSI status based on standard-of-care tissue testing was available. The landscape of cfDNA-based MSI across solid tumor types was investigated in a cohort of 28,459 clinical plasma samples. Clinical outcomes for 16 patients with cfDNA MSI-H gastric cancer treated with immunotherapy were evaluated. RESULTS: cfDNA MSI evaluation was shown to have high specificity, precision, and sensitivity, with a limit of detection of 0.1% tumor content. In evaluable patients, cfDNA testing accurately detected 87% (71/82) of tissue MSI-H and 99.5% of tissue microsatellite stable (863/867) for an overall accuracy of 98.4% (934/949) and a positive predictive value of 95% (71/75). Concordance of cfDNA MSI with tissue PCR and next-generation sequencing was significantly higher than IHC. Prevalence of cfDNA MSI for major cancer types was consistent with those reported for tissue. Finally, robust clinical activity of immunotherapy treatment was seen in patients with advanced gastric cancer positive for MSI by cfDNA, with 63% (10/16) of patients achieving complete or partial remission with sustained clinical benefit. CONCLUSIONS: cfDNA-based MSI detection using Guardant360 is highly concordant with tissue-based testing, enabling highly accurate detection of MSI status concurrent with comprehensive genomic profiling and expanding access to immunotherapy for patients with advanced cancer for whom current testing practices are inadequate.See related commentary by Wang and Ajani, p. 6887.


Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Microsatellite Instability , Neoplasms/genetics , Biomarkers, Tumor/blood , Case-Control Studies , Follow-Up Studies , Genotype , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/blood , Neoplasms/pathology , Prognosis
15.
Clin Cancer Res ; 25(19): 5832-5842, 2019 10 01.
Article En | MEDLINE | ID: mdl-31300450

PURPOSE: RET is an emerging oncogenic target showing promise in phase I/II clinical trials. An understudied aspect of RET-driven cancers is the extent to which co-occurring genomic alterations exist and how they may impact prognosis or therapeutic response. EXPERIMENTAL DESIGN: Somatic activating RET alterations were identified among 32,989 consecutive patients with metastatic solid tumors tested with a clinical cell-free circulating tumor DNA (cfDNA) assay. This comprehensive next-generation sequencing (NGS) assay evaluates single-nucleotide variants, and select indels, fusions, and copy number gains in 68-73 clinically relevant cancer genes. RESULTS: A total of 176 somatic activating RET alterations were detected in 170 patients (143 fusions and 33 missense mutations). Patients had non-small cell lung (NSCLC, n = 125), colorectal (n = 15), breast (n = 8), thyroid (n = 8), or other (n = 14) cancers. Alterations in other oncogenic signaling pathway genes were frequently identified in RET-positive samples and varied by specific RET fusion gene partner. RET fusions involving partners other than KIF5B were enriched for alterations in MAPK pathway genes and other bona fide oncogenic drivers of NSCLC, particularly EGFR. Molecular and clinical data revealed that these variants emerged later in the genomic evolution of the tumor as mechanisms of resistance to EGFR tyrosine kinase inhibitors. CONCLUSIONS: In the largest cancer cohort with somatic activating RET alterations, we describe novel co-occurrences of oncogenic signaling pathway aberrations. We find that KIF5B-RET fusions are highly specific for NSCLC. In our study, only non-KIF5B-RET fusions contributed to anti-EGFR therapy resistance. Knowledge of specific RET fusion gene partner may have clinical significance.


Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Mutation , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ret/genetics , Cohort Studies , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasm Staging , Neoplasms/blood , Neoplasms/pathology , Oncogenes , Prognosis , Proto-Oncogene Proteins c-ret/metabolism , Signal Transduction
17.
Neurophotonics ; 5(3): 035001, 2018 Jul.
Article En | MEDLINE | ID: mdl-30035151

Previous research has demonstrated changes in neurovascular activation of the prefrontal cortex to increased working memory load. The primary purpose of the current paper was to investigate overload of working memory capacity using functional near-infrared spectroscopy (fNIRS) within the framework of motivational intensity theory. A secondary goal was to explore the influence of the correlation-based signal improvement (CBSI) as a method for correcting the influence of systemic variables. In study one, 30 participants (15 female, mean age = 21.09 years, s.d. = 2.9 years) performed a verbal version of the n -back working memory task under four levels of demand (easy, hard, very hard, and impossible). In contrast to the raw data, CBSI-transformed fNIRS data indicated that neurovascular coupling was highest at hard demand when the task was challenging but success was possible. The second study ( N=30 ; 15 female, mean age = 22.4 years, s.d. = 5.3) replicated the working memory manipulation with the addition of low versus high levels of financial reward. Analyses of CBSI-transformed levels of oxygenated (HbO) and deoxygenated (HHb) hemoglobin replicated the first study at right lateral regions of the prefrontal cortex (BA46). HHb_CBSI data were significantly reduced at impossible demand for participants receiving the higher level of financial reward. The study is the first to support predictions from the motivational intensity model using neurovascular data. In addition, the application of CBSI to fNIRS data was found to improve the sensitivity of HbO and Hbb to the independent variables.

18.
Cancer Cell ; 34(1): 148-162.e7, 2018 07 09.
Article En | MEDLINE | ID: mdl-29990497

Targeting HER2 is effective in 24% of ERBB2 amplified metastatic colorectal cancer; however, secondary resistance occurs in most of the cases. We studied the evolution of individual metastases during treatment to discover spatially resolved determinants of resistance. Circulating tumor DNA (ctDNA) analysis identified alterations associated with resistance in the majority of refractory patients. ctDNA profiles and lesion-specific radiographic reports revealed organ- or metastasis-private evolutionary patterns. When radiologic assessments documented progressive disease in target lesions, response to HER2 blockade was retained in other metastases. Genomic and functional analyses on samples and cell models from eight metastases of a patient co-recruited to a postmortem study unveiled lesion-specific evolutionary trees and pharmacologic vulnerabilities. Lesion size and contribution of distinct metastases to plasma ctDNA were correlated.


Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lapatinib/administration & dosage , Liver Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Tomography, X-Ray Computed , Trastuzumab/administration & dosage , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Class I Phosphatidylinositol 3-Kinases/genetics , Clinical Decision-Making , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Mutational Analysis , Disease Progression , Female , Gene Amplification , Humans , Italy , Lapatinib/adverse effects , Liquid Biopsy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Magnetic Resonance Imaging , Male , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Predictive Value of Tests , Progression-Free Survival , Protein Kinase Inhibitors/adverse effects , Receptor, ErbB-2/genetics , Risk Factors , Signal Transduction/drug effects , Time Factors , Trastuzumab/adverse effects , Treatment Outcome , Tumor Cells, Cultured , ras Proteins/genetics
19.
Clin Cancer Res ; 24(15): 3528-3538, 2018 08 01.
Article En | MEDLINE | ID: mdl-29776953

Purpose: Cell-free DNA (cfDNA) sequencing provides a noninvasive method for obtaining actionable genomic information to guide personalized cancer treatment, but the presence of multiple alterations in circulation related to treatment and tumor heterogeneity complicate the interpretation of the observed variants.Experimental Design: We describe the somatic mutation landscape of 70 cancer genes from cfDNA deep-sequencing analysis of 21,807 patients with treated, late-stage cancers across >50 cancer types. To facilitate interpretation of the genomic complexity of circulating tumor DNA in advanced, treated cancer patients, we developed methods to identify cfDNA copy-number driver alterations and cfDNA clonality.Results: Patterns and prevalence of cfDNA alterations in major driver genes for non-small cell lung, breast, and colorectal cancer largely recapitulated those from tumor tissue sequencing compendia (The Cancer Genome Atlas and COSMIC; r = 0.90-0.99), with the principal differences in alteration prevalence being due to patient treatment. This highly sensitive cfDNA sequencing assay revealed numerous subclonal tumor-derived alterations, expected as a result of clonal evolution, but leading to an apparent departure from mutual exclusivity in treatment-naïve tumors. Upon applying novel cfDNA clonality and copy-number driver identification methods, robust mutual exclusivity was observed among predicted truncal driver cfDNA alterations (FDR = 5 × 10-7 for EGFR and ERBB2), in effect distinguishing tumor-initiating alterations from secondary alterations. Treatment-associated resistance, including both novel alterations and parallel evolution, was common in the cfDNA cohort and was enriched in patients with targetable driver alterations (>18.6% patients).Conclusions: Together, these retrospective analyses of a large cfDNA sequencing data set reveal subclonal structures and emerging resistance in advanced solid tumors. Clin Cancer Res; 24(15); 3528-38. ©2018 AACR.


Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Clonal Evolution/genetics , Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , DNA Copy Number Variations/genetics , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Neoplasms/blood , Neoplasms/pathology
20.
Clin Cancer Res ; 24(15): 3539-3549, 2018 08 01.
Article En | MEDLINE | ID: mdl-29691297

Purpose: To analytically and clinically validate a circulating cell-free tumor DNA sequencing test for comprehensive tumor genotyping and demonstrate its clinical feasibility.Experimental Design: Analytic validation was conducted according to established principles and guidelines. Blood-to-blood clinical validation comprised blinded external comparison with clinical droplet digital PCR across 222 consecutive biomarker-positive clinical samples. Blood-to-tissue clinical validation comprised comparison of digital sequencing calls to those documented in the medical record of 543 consecutive lung cancer patients. Clinical experience was reported from 10,593 consecutive clinical samples.Results: Digital sequencing technology enabled variant detection down to 0.02% to 0.04% allelic fraction/2.12 copies with ≤0.3%/2.24-2.76 copies 95% limits of detection while maintaining high specificity [prevalence-adjusted positive predictive values (PPV) >98%]. Clinical validation using orthogonal plasma- and tissue-based clinical genotyping across >750 patients demonstrated high accuracy and specificity [positive percent agreement (PPAs) and negative percent agreement (NPAs) >99% and PPVs 92%-100%]. Clinical use in 10,593 advanced adult solid tumor patients demonstrated high feasibility (>99.6% technical success rate) and clinical sensitivity (85.9%), with high potential actionability (16.7% with FDA-approved on-label treatment options; 72.0% with treatment or trial recommendations), particularly in non-small cell lung cancer, where 34.5% of patient samples comprised a directly targetable standard-of-care biomarker.Conclusions: High concordance with orthogonal clinical plasma- and tissue-based genotyping methods supports the clinical accuracy of digital sequencing across all four types of targetable genomic alterations. Digital sequencing's clinical applicability is further supported by high rates of technical success and biomarker target discovery. Clin Cancer Res; 24(15); 3539-49. ©2018 AACR.


Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Genomics , Neoplasms/genetics , Biomarkers, Tumor , Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , Female , Genotype , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Neoplasms/blood , Neoplasms/pathology
...